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Asymptotic expansions for the exponential growth rate, known as the 
Lyapunov exponent, and rotation numbers for two coupled oscillators driven by 
real noise are constructed. Such systems arise naturally in the investigation of 
the stability of steady-state motions of nonlinear dynamical systems and in 
parametrically excited linear mechanical systems. Almost-sure stability or 
instability of dynamical systems depends on the sign of the maximal Lyapunov 
exponent. Stability conditions are obtained under various assumptions on the 
infinitesimal generator associated with real noise provided that the natural 
frequencies are noncommensurable. The results presented here for the case of 
the infinitesimal generator having a simple zero eigenvalue agree with recent 
results obtained by stochastic averaging, where approximate It6 equations in 
amplitudes and phases are obtained in the sense of weak convergence. 

KEY WORDS:  Lyapunov exponents; rotation numbers; almost-sure 
stability; It6 equations; stochastic averaging. 

1. I N T R O D U C T I O N  

The almost-sure asymptotic stability of a linear stochastic differential equa- 
tion depends on the sign of the maximal Lyapunov exponent. In the case 
of white noise, a general method for obtaining necessary and sufficient con- 
ditions for stability was presented by Khasminskii, (4) with explicit results 
for second-order systems obtained by Kozin and Prodromou (6) and 
Mitchell and Kozin. (7) A complete study of second-order systems, taking 
into consideration all possible singularities that can exist in one-dimen- 
sional diffusion, was presented by Nishioka. (8) However, there are very 
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few results for the case in which the noise is ergodic and nonwhite. 
These results are due to Arnold et aL ~3) and Pardoux and Wihstutz, (1~ 
where almost-sure asymptotic stability of a second-order system with a 
colored noise process was considered. A survey of known results on the 
asymptotics of Lyapunov exponents and rotation number for general two- 
dimensional systems driven by white or real noise is given by Pinsky 
and Wihstutz. (11~ More recently, Sri Namachchivaya (12) obtained analytic 
results for almost-sure asymptotic stability of multi-degree-of-freedom 
linear systems excited by combined stochastic and harmonic excitation. 
These results were derived under the assumption that one of the degrees of 
freedom is critically damped, while the remaining degrees of freedom are 
strongly stable. 

In most studies reported to date, the necessary and sufficient condi- 
tions were obtained only for a second-order system or a multi-degree-of- 
freedom system with a single critical mode. However, to understand most 
physical phenomena, it is necessary to obtain results for multi-degree-of- 
freedom systems. The level of mathematical difficulty encountered in this 
type of analysis, due to the associated multidimensional diffusion problem, 
has restricted major developments in this area. Recently, the authors (14) 
have presented a perturbative theoretical approach to calculating the maxi- 
mal Lyapunov exponent for stochastically coupled two-degree-of-freedom 
systems in which the noise was assumed to be white and of small intensity. 

Often the external fluctuations are modeled by a zero-mean Gaussian 
white noise. Unfortunately, however, this does not always provide a good 
description of the fluctuations that occur in nature. In particular, the 
6-correlation of the white noise is an idealization of the correlation of real 
processes, which often have finite correlation times. There are many 
stochastic processes which can describe such excitations. A simple process 
exhibiting such a finite correlation is an Ornstein-Uhlenbeck process, 
which is a solution of the stochastic differential equation 

du = - c~u dt  + x / 2  a d W  

where the correlation function and the spectral density are given by 

0 -2 0 .2 

- -  e-~' M ,  S ( r  : 0r 2 R(~) = ~ + c~ 2 

It is worth noting that by scaling a = ~ e and letting e tend to o% the 
noise becomes standard white noise and the parameter c~ describes the 
bandwith of the noise, while e represents its spectral density. 

In this paper, the results of ref. 14 for white noise are extended to 
incorporate real noise excitation with specific infinitesimal generators G. 
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The systems under consideration consist of multiplicative two-degree-of- 
freedom systems. Such systems are encountered in the study of mechanical 
systems subjected to fluctuating loading or imposed displacements as well 
as in the investigation of the stability of steady-state motions of nonlinear 
dynamical systems. Consider, for example, 

fq + 2~091-91 + m2 Yl + U(Yl, Y2) = w(t) 

J~2 + 2{e02.92 + 0o22 Y2 -~- Y2 g(Yx, Y2) = 0 

where f(0, 0)= 0, Of/c~y2(y~, 0)#  0, and w(t) is a white noise process. Then 
the stability of the solution (Yl= {(t), y2=0) is governed by a set of 
variational equations (1) with {(t) defined by 

~'-1- 2(~o I ~ + co2r +f(r  0) = w(t) 

The purpose of this work is to develop approximations for the top 
Lyapunov exponents under various hypotheses about the real noise pro- 
cess. When G has an isolated simple zero eigenvalue, the results for the 
maximal Lyapunov exponent obtained here agree with those of Ariaratnam 
and Xie (1) and Sri Namachchivaya and Talwar. ~ In addition, an 
approximation of the rotation number for each degree of freedom is also 
developed. The problem is formulated in Section 2. An asymptotic expan- 
sion leads to the general results appearing in Section 3. Section 4 contains 
an explicit evaluation of the Lyapunov exponent and rotation numbers. 
Section 5 contains some concluding remarks. 

2. STATEMENT OF THE PROBLEM AND THE FORMULATION 

Consider linear oscillatory systems described by equations of motion 
of the form 

2 
~i+o)2iqi+~22~o)i~i+g ~ koqjf(~(t))=O, i , j=  1, 2 (1) 

j = l  

where the q:s are generalized coordinates, co i is the ith natural frequency, 
and g~ represents a small viscous damping coefficient. It is assumed that the 
natural frequencies are noncommensurable. The stochastic term e~(t) is a 
small-intensity, real-noise process on a smooth connected Riemannian 
manifold M (with or without boundary). The smooth nonconstant function 
f :  M ~  R is such that f(~(t)) has zero mean. The associated infinitesimal 
generator is assumed to have the form 

G ( r  ~ "i(r ~ ~ki(r j 1 
i=1 = i=1 " 

822/71/3-4-i3 
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For the case where M is one-dimensional, the solution of the associated 
adjoint problem G*o(~) = 0 can explicitly be written in terms of scale and 
speed measures as 

v ( r 1 6 2  (3a) 

where 

f 
~ 

S(~)= s(rl)drl, m(~)= [a2(~)s(r -1 

s( / )  = exp [ C x 2fi(~/) /~({) + ~ 0a({) 

and the constants cl and cz are obtained by using the boundary and 
normality conditions. The solution of G u ( { ) =  0 is 

u({) = ~ + flS(~) (3b) 

In order to make the problem tractable, G will be assumed to have an 
isolated simple zero eigenvalue. Hence, the only solution for Gu = 0 is 
u ~ c o n s t  (i.e., there are no other linearly independent solutions). From 
this, it follows that the associated adjoint operator G* also has zero as a 
simple, isolated eigenvalue and the normalized invariant measure v({)d{ 
satisfies G*~({)=0. For the case of one-dimensional diffusion, the above 
assumption leads to the natural boundary condition 6 = 0 on OM and the 
zero flux property 

-~(O v(~)+~ (~2(0 v(O)= 0 

The almost-sure stability of the equilibrium state q = 0 = 0 of Eq. (1) 
is to be investigated. Using the transformations q ;=x2i_ l ,  0;=to~x2i, 
i = 1, 2, we can represent Eq. (1) as the following system of Stratonovich 
differential equations: 

Yc = A x  + f ( { ( t ) )  B x  
(4) 

d~ = ~( ~ ) ,it + ,r( O o d W ,  

where A and B are 4 x 4 constant matrices given by 

A =  - 1 --e22~f~ 0 00 

0 0 o2 
0 - -  0 2 - -  g22~fO2 
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I ~ ~ 1 7 6  il 
-k11/col 0 -k12/col 

B = e  0 0 0 

-k21/co2 0 -k22/co2 

and Wt is the standard Wiener process. According to Oseledec's 173 multi- 
plicative ergodic theory (see Arnold and Wihstutz(2)), for a stationary 
stochastic process and initial random variable Xor the Lyapunov 
exponent (i.e., the exponential growth rate) of the corresponding solution 
x(t; Xo) of Eq. (4) is given by 

2(Xo)= lim l l o g  Ilx(t;xo)ll w.p. 1 
l--, oo t 

Moreover, for ergodic random processes, the random variable 2(Xo) takes 
on nonrandom values 

2 m i n = 2 p < 2 p _ l  < ' ' "  < 2 1 = 2 m a x  

with nonrandom multiplicities which add up to 4 in our case. The top 
Lyapunov exponent 2 max, which will be denoted as 2 henceforth, defines 
the sample stability or instability of the trivial solution of Eq. (4). However, 
the explicit evaluation of 2 in terms of system parameters, which, as we 
shall show in this section, is given by an integral over the unit sphere with 
respect to the invariant measure of an associated diffusion, is usually dif- 
ficult. Due to this, we only present an asymptotic expansion of 2 in terms 
of the intensity of the noise and damping, which are assumed small. To this 
end, the usual transformation is introduced to the original system (4), i.e., 

X 2 i - -  1 = ri cos qii, x2i = - ri sin ~bi, Pi = ln(ri) 

which yields 

Pi = e2[-i/~i (~)3  ~- e[pi (exp(pj - -  Pi), ~b)] f (~ ( t ) )  

q~i =[coi  + e2h,(~b)] + ~[h, (exp(py-  p~), ~b)] f (~ ( t ) )  

where p,. and hi contain terms of the form exp(py-  p;) for i r  These terms 
are due to the stochastic coupling between the first and the second degrees 
of freedom. Since exp(py - p~) = rj/r~ is always positive, one can introduce 
a one-to-one mapping e x p ( p 2 - p l ) = t a n O  , where 0~<0~<rc/2. This 
motivates the following transformation: 

x I = r cos ~b I cos 0, x3 = r cos ~b 2 sin 0 

xz = - r sin q51 cos 0, x4 = - r sin ~b 2 sin 0 
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where 

0..< r 2re, 0~<0~<1t/2 

In the above transformation, r represents the norm of the response, r and 
r are the angles of the first and second oscillators, respectively, and 0 
describes the coupling or exchange of energy between the first and second 
oscillators. Letting p = l n  Ilxll, we can write the Stratonovich stochastic 
differential equations for p, r r O, and r as 

/0 = ~2q1(r r O) "~- e f ( ( ( t ) )  q1(r r O) 

O = e2~2(r r O) + e f (~( t ) )  q2(r r O) 
(5) 

~b~=oo~+e2"~( r162162162  i = 1 , 2  

d~ = #(4)  at + ~r(()o d W ,  

where 

q l  ~ 

~2 = 

ql = 

- I/h(1 - cos 2r cos 2 0 +//2(1 - cos 2r sin 2 O] 

1 
[ql(1 - c o s  2r ) -//2(1 - c o s  2r sin 20 

1 
[(P21 cos r sin r +P~2 sin r cos r sin 20 

+P22 sin 2r sin 2 0 +P l l  sin 2r cos 2 O] 

1 
q2 = ~ [-(P22 sin 2r - P H  sin 2r sin 20 + 4p2a cos r sin r cos2 0 

-4p12 sin r cos r sin 2 O] 

hi =P l l  cos2 r +P12 cos r cos r tan 0 

h2 =P22 cos2 r cos r cos r  0 

h~ = -//~ sin 2r P,7 = ku, //; = ~09~ 
(.0 i 

Since the processes (r r O, ~) do not depend on p, the processes 
(r r O, ~) alone form a diffusive Markov process and the associated 
generator is given by 

L ~ = L ~ + eL i + e2L 2 (6) 
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where 
2 

L~ 

L~=f(~)(q2 d ~h~o-~i ) 

i=1 

Integrating Eq. (5a) for p yields 

,,x(t; xo)l, = llxol, expIf ~ Q~(q~l(z), q92('c), O('r), ~(z)) dz] 

where 

(7) 

where 

H~(~Pl, ~P2, O, ~)=f, oi-l-sf(~) hi(q91, (02, 0)-q-g2hi(cPl, q92, 0) 

3. ASYMPTOTIC ANALYSIS 

In order to obtain the solution given by the integral (8), we expand 

o.4_ 8 1 gZQ2 Q=Q Q+ 

Q~(r cp2, 0, ~)=gf(~)ql(~pl, Cp2 , 0)-~ ~2ql(~O1, (~2, 0) 

According to Oseledec's (7) multiplicative ergodic theory, under the assump- 
tion that L ~ is ergodic, the top Lyapunov exponent is given by 

(. re/2 2n 2~ 

xPe(•I, ~)2, O, ~) dr dO2 de dO (8) 

where p~ is the unique ergodic invariant probability measure given by 

U*p~=O (9) 

provided L ~ is hypoelliptic. In addition, the rotation number for each 
degree of freedom can be written as 

( ~i = - tan-1 x 2 i  = <H~, p'> (10) 
t--*~ t X2i_l/  
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and construct a formal expansion of p ~ = p O + a p l + . . . . . . b s N p N b . . "  SO 
that the Fokker-Planck equation 

L~*p e = (L ~ + eL 1 + e2L2)(p ~ + el) 1 + . . .  ) = 0 

yields a sequence of problems for pO, p l  p:,...: 

L~176 = 0, L ~ 1 7 6  L ~  ~ .... (11) 

By constructing an expansion for the adjoint problem LeF t = Qe, it will be 
shown that the expansion for the maximal Lyapunov exponent 

U =  (QO, p O ) +  e((QO, p ~ ) +  (Q1, pO)) 

+ e 2 ( ( O ~  p l ) + ( Q 2 ,  p ~  (12a) 

is in fact asymptotic. To this end, as in Arnold et al., (3) consider an adjoint 
expression for L~F e = Q~ with F e = F ~ + eF ~ + . . .  + eNF N such that 

(L  ~ + eL ~ + e2L2)(F ~ + eF ~ + . . .  + eNFN) 

= Oe__ (qO + eql + . . .  + eNqN) + eN+ I { L I F N  + L 2 F N - ~ }  

-t- eN+ 2{L2F N} 

Here qO, ql,..., qN are functions that do not depend on ~o and 0, and are 
chosen so that the sequence of problems 

LOF o = QO _ qO, LOF 1 = Q1 _ ql _ L1F o 

L ~ 1 7 6  ..... L~  N I_L2FN-2 

is solvable. Then, defining pe=pO+ epl+ ... + eNpU, and assuming that 
the marginal of both p~ and/3 e on M is o(~), leads to the following error 
between the Lyapunov exponent defined in Eq. (8) and the expansion in 
Eq. (12a): 

(Qe, pe) _ {(QO, pO) + e[(QO, p l )  q_ (Q1, pO)] 

+e2[(QO, p2) + (Q~, p~) + (Q2, pO)] + ... 

q_ ~N[ (QO, p N )  q_ (Q1, pN--1) -'k (Q2, pU--2)] } 

= _ ~ N + I [ ( L I F N + L 2 F N - 1  ' p e )  -k- (L I*pN+LZ*p  N - l ,  r e ) 

_ ( L I F N + L 2 F N - ~  ' ~e )  _ (Q1, pU) __ (Q2, pU--,)] 

_ sN+ 2[ ( L2FN, p e )  + ( L2*pN, r e)  _ ( L2F N, fie} _ ( Q2, p N )  ] 
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Suppose that pO, pl,..., pN and F ~ F1,..., F N are such that inner products on 
the rhs of the above equations are well defined and, due to the fact that pC 
is unknown, assume the existence of the following bounds: 

sup ]L1FN+L2F u 11~<K1<~, sup ]LZFNI<<.K2<oO 
~o,0,~ ~o,0,r 

Then it is clear, using the above estimate, that the asymptotic expansion 
for a fixed N~>0 given by Eq. (t2a) is valid. Since Q~ the approxima- 
tion reduces to 

2~=e(QX, p~ pl)+(Q2, p~ 3) (12b) 

where pO and pl are governed by Eqs. (11) and satisfy the boundary 
conditions 

p~ + 27z, ~02, 0, ~) =p~ 1, (p2 + 2To, 0, ~) =p~ q~2, 0, ~) 
(13) 

Pl(fPl + 2~, (P2, 0, ~)----pl(fpl , fp2 + 2re, 0, ~ )=p l ( (p l ,  ~o2, 0, 4) 

It is important to point out that in addition to smooth functions, pO and 
pl can be generalized functions due to certain singularities. In this work, all 
possible solutions ofp  ~ will be determined in order to calculate the leading- 
order approximation of the maximal Lyapunov exponent. It is clear from 
the first of Eqs. (11) that the general solution o f p  ~ is of the form 

A(O) 1 P~ (P2, 0, ~) = o(~) F(0, COl (P2 - ~oz ~01) exp [_2c~1 o~2 (~ ~o2 + o~2 q~l) 

(14) 

Since it is assumed that the frequencies ~o 1 and ~o2 are noncommensurable, 
as shown in the Appendix, the periodic boundary conditions imply 
A(O) = 0 and P(0, (Dlq) 2 --(,02(~1 ) ~F(O). Thus, the stationary solution can 
be written as 

pO_ v(~) F(O) 
4~Z2 (15) 

where F(O) is yet to be determined. In the work of Arnold et aL, ~3) both pO 
and L ~ are functions of the same independent variables. However, in the 
present case L ~ is only a function of (cp 1, ~o2, ~), whereas pO depends, in 
general, on q~l, q~2, 0, and ~. Thus, one cannot completely determine pO 
by solving the O(1) equation. In order to calculate pO completely, it is 
necessary to consider the e-order Poisson equation along with its adjoint 
problem, i.e., 

L~ I = - Ll*p ~ and L~ = 0 (16) 
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The solution for pO in Eq. (12b) requires that Lt*p ~ satisfy the solvability 
condition 

(Ll*p ~ u) =0  Vu ~ kcr(L ~ (17) 

Due to the assumption on G and the periodic boundary conditions, 
ker(L~ {C(0): C is an arbitrary function} and the solvability condition 
reduces to 

(2/2 C(O) fM f(4)0(4)d~ 

0 } (q2F)+F ~ d(pldq~ 2 dO=O (18) 

which is automatically satisfied since the expression in braces is identically 
zero. In addition, for arbitrary F(O) the inner product (Q1, pO)=0.  This 
implies that the leading-order approximation of the Lyapunov exponent is 

U =  e2((Q 2, pO) + (QI, p~ ) ) +  O(/~3) (19) 

It is clear that both p0 and pl are required to glean any information on 2L 
The solvability condition for Eq. (16), being identically satisfied, yields no 
information on F(O), thus leaving pO undetermined. This further implies 
that a solution of Eq. (16) for pl exists for arbitrary F(O). However, it will 
be shown that the solvability condition for Eq. ( l lc)  will provide F(O) 
yielding a unique pO and, in turn, pl. In order to solve for p~, Eq. (16) may 
be written as 

2 c o ~  ~ f(r G* - S '  pl _ _ _  [ -F~(O) sin 2~o 1 + F2(O) sin 2q92 
,""1"= g~~ i/ 4rc2 

+F+(O) sin q~+ -F-(O) sin q)-] 

f(r v(4) 
- 4rc2 R((pl, q~2, 0) (20) 

where 

z 1 cos 20) dF ( 1 + ~  FlPll Fl(O)= I~ sin 20 ~ +  

F*(O) =-~ (P21 cos2 0 - fiPl2 au 

- [(sin 20 + cot O) P2~ + 6(sin 20 + tan O) p~2]F} 
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@ =  ~Pl + 6~02 and ~ = _ 1. Various methods are available for solving the 
above equation. However, in order to make use of the transient density 
g(x, t; t/, 0), which is a solution of 

Og 
O-~=a*g, g(~., 0; t/, 0) = 6 ( ~ -  t/) (21) 

the approach of Arnold et al. (3) will be adopted. The solution pl may be 
considered as the limiting steady-state solution of the following transient 
problem with zero initial condition: 

( c3 2 ~ ) - f ( ~ ( 2 ~ )  R(qh, q)2, 0 ) (22) ~-i~=l(Di~i~i -G:~ P~ 

Making use of the transformation 

e92/3 

o27J 

in Eqo (22) yields 

47t2 R(~01(r, s, 7), ~02(~, s, 7), 0) 

whose solution can be written as 

1S l foi l  M ] P,( , 7, O, 4) = 4zt---5 f(•) v(,) g(~, T; q, O) d, 

x R(~ol(z - T, s, 7), q~z(r - T, s, y), 0) dT 

The final form of pl can be written reverting to the original coordinates 
{t,q~, ~P2} and taking the limit as t ~  ~ :  

Pl(q)l, q~2, 0, 4 )=  ~-5~2 n(qol, cp2, 0, T) K(r T) dr  (23) 

where 

/-I(q~ 1 , cp 2, 0, z ) =  - F I ( 0 )  sin(2e)l z -  2(/)1)-b F2(0 ) sin(2cozr- 2q~2) 

+ F+(O) sin(O + z - q~+ ) -F- (O)  sin(f2- z - q)-) 

K(~, z) = ~ f(q) v(tl) g(~, z; tl, O) dtl JM 
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and s a = (D 1 ~- ~ ( D  2 . Substituting pO and pl 
maximal Lyapunov exponent yields 

~ rc/2 
28= - -  (tllCosZO+tlzsin20) F(O)dO 

~o 

-'k'-~2"o fo fo f (~)g(~"r)d~g(q~l ' (P2'O'~)d'r  

• ql(~01, r O) dq~ 1 d~o 2 dO 

Sri Namachchivaya and Van Roessel 

in the expression for the 

(24) 

Making use of the fact that the correlation of f (~)  is given by 

R(~)= fM f(~) K(~, ~) d~ = fM fM f(~) f(tl) v(tl) g(~' T, q, O)d~ &l 

and the cosine spectrum is defined as 

S(co) = 2 f o  R(z) cos cot d~ 

the Lyapunov exponent becomes 

U =  21cos20+22sin20+ ~2(O)+~p21p~2~6S(f2a) F(O) dO (25) 
~ 6 

where 

~/2(0) = ~_~ 1 [ i=l ~ p2S(2~ sin220+321~6[(p21+~p12)2c~ 

+ (P2~ - 6P~2) 2 + 2(p21 -P22) cos 20] S((2 a) 

1 
2 i = -- rli "+ -~ piiS(2ogi) 

One may easily verify that ~2(0)/>0. It now remains to determine 
F(O). To this end, the solvability condition of Eq. ( l lc )  is needed. Inserting 
Eqs. (15) and (23) into ( l lc )  yields 

G* - co~ = go(q~, ~o 2, 0, ~) + Z~(qN, r 0, ~) (26) 
i=1 
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where 

i=1 

m<,4o2,0, rl 

+q2-~-~+0H ~ ~'iOH] hi ~ g( ~, T) dT 
i=1 

The solvability condition reduces to 

for~/2 C(O) fM fOZ~ ;~ r)~o(q)l, 4o2, 0, ~) 

+ Z1(4Ol, 4o2, 0, ~)] d4ol d4o2 d~ dO = 0 

For this condition to hold for arbitrary C(O) one must have 

where 

and 

(27) 

&(O)= fM f~= fF=Xo(4O,, 4O2, 0, ~) d4Ol d4O2 d~ 

2~ 

The first integral, /~o, reduces to 

Fo(O)= } Ol,--~72) ~ [F(O) sin 20] 

and the second integral reduces to 

/~1(0) - 16 i= 1 p" [f~(0) sin 20] S(2coi) 

- !  2 
s P"O0 [Fa(O)(P2J c~ 0-@12 sin 2 0)] S(f2 a) 

8 6 

Combining the above results for -#o and F~ in Eq. (28) yields a second- 
order ordinary differential equation for F(O), 

d 1 d 2 
dO [~(0) F(0)] + ~ ~ [ ~2(0) F(0)] = 0 (29) 

f o ( 0 ) + f l ( 0 ) = 0  (28)  
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where 

~(0) = __~ I()~l __ ~2) q_ I (p21 _p22 ) E S(Qa) 1 sin 20 
6 

1 [ ~ p2S(20i) - ~ (P21+ ~5P12) 2 S(~"~6)] sin 40 
"~-6-4 i=l 6 

+ g S(~a) sin 20 

In order to complete the analysis, the rotation number for each degree 
of freedom is calculated. By similar arguments used in deriving Eq. (12b), 
asymptotic expansion of the rotation numbers can be constructed by 
replacing Q~ by H~, which yields 

~=o,+e(H~, pO)+ e2E(H2 ' pO) + ( H I ,  p~)]  + 0(e 2) 

Substituting for pO and pl in the above equations and making use of the 
fact that f({)  has zero mean yields 

g2 =/2 2= 2r~I; ? ] 
O~=('Oi +~2 ;0 fo fo fM f(~) K(~, "r5)d~ H((Pl , ~02, O, g)d'17 

x hi(q~l, ~02, O) d(Pl dq~2 dO 

As in the calculation of Lyapunov exponents, making use of the definitions 
of correlation and the sine spectrum o f f ( O  results in 

(,~/2 g2 
~. = o , -  J0 8- {P2F(2~ +p12 p2~ [/'(• + ) + ( -  1)' r(g2- )] } 

x F(O) dO - e2c~i (30) 

where / 
(~1 =p122 lim [sec 0 F(0)] 

0 ~ ~/2 

42 =p21 lim [csc 0 F(0)] 
0--*0 

F(~o) = R(z) sin ~oz dr 

In summary, the above analysis indicates that in order to determine 
the first nonvanishing Lyapunov exponent, which for this case is of the 
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order e 2, it is essential that one determines both pO and pX. However, the 
explicit form of both pO and pl  in turn depends on an arbitrary function 
F(O) which is normalized to one. The equation governing F(O) is deter- 
mined from the solvability condition for p2, and once Eq. (29) is solved for 
F(O) with the appropriate boundary conditions, the maximal Lyapunov 
exponent and the rotation numbers can be calculated from Eqs. (25) and 
(30), respectively. 

4. E V A L U A T I O N  OF S O L U T I O N S  

The procedure presented so far has not restricted p0 to be a smooth 
function of 0. In general, it is possible to have singularities in 0; thus, some 
justification is needed in order to ensure that pO is a bounded positive 
density. It is clear from the form of the diffusion term that there may be 
singularities in the open interval (0, zt/2), i.e., when Zip i iS(2o) i )=0 ,  
singularities exist for P12P21>0 if S(f2-)=0 and cos 2 0 =  
(P12-P21)/(P~2+P21), and for (p12p21)<0 if S ( f 2 + ) = 0  and c o s 2 0 =  
(P12 +P2~)/(PI2-P2~). Only the nonsingular cases will be considered. The 
drift and diffusion terms of Eq. (29) are conveniently written in the form 

~2(0) = A cos 2 20 + B cos 20 + C 
(31) 

qs(0) = - �89 - 22) sin 20 + g~2(0) cot 20 

where 

i = l  

1 
g = ~ (P21 q- P12)(P21 -P12) [S(  ~Q + ) q- S(~2 - )] 

i = 1  

It is clear from the transformation [Eq. (5)] that 0 - -0  implies r I --0, 
and 0 = ~/2 implies r2--0.  It is clear physically that unless the coupling 
coefficients P2~ and P12 are both zero, it is not possible to have a solution 
with either r~ or r2 identically zero. Thus F(0) will not represent a point 
mass at 0 = 0 or 0 = re/2. Moreover, this assertion can also be justified by 
applying the Feller classification based on scale and speed measures for the 
F(O) process. It can easily be shown that (q~i, 0 = 0) and (qg~, 0 = re/2) are 
entrance boundaries and the stationary density function is therefore given 
by 

sin 20 F(O)=C o--~exp{-(21-22)[fl(O)-~fl(;)] } (32) 
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where 

1 [2 (rc)] ~~ sin 2q C ~---- ~ (~1 - -  "~2) csch (~1 -- 22)/~ ~ , /~(0) = Jo ~ dr/ 

Substituting expression (32) for F(O) into Eq. (25) leads to the following 
expression for the maximal Lyapunov exponent: 

~2 {21+ )~2 + (21-- 22) coth [~ ()~1 --)~2) fl ( ; ) ]  2~=~ 

1 (2 + +-~P21P12[S( )-- S((2-)]} (33) 

Similarly, substitution of F(O) into the expression for the rotation number 
leads to 

ei=coi--~ p].F(2COi)+P12P21[F(O+)+(-1)iF(F2 )] 

+ 4(21-- ),2) csch [~ ()~1 - 22)/~ ( ; ) ]  exp [ ~ ~  (2J - 22) fl ( ; ) ]  

)} 
x s (o  +)+s (o  +) 

Defining a and b in terms of cosine spectra at 2e) i and 
stochastic coefficients as 

2 

a= 1 ~' p~.S(2coi)_ �88 pz, P12S((2 +) 
i = 1  

2 

b= ~6 Z p~iS(ZCOi) + �88 P21P12S((2- ) 
i = 1  

CO 1 ~ C0 2 a n d  

we find the expression for fl(n/2): 

I ~ in x/-a + x//b ' 

[3 = a+b '  

1 {2(--ab)l/z.'~ 
, ( -ab ) l /~ tan -~ \  a+b / '  

ab >O 

ab = 0 

ab < 0 
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When the coupling terms are identically zero (i.e., P2~ ~ 0  and 
Pa2--*0), it is evident that a b > O  and /3(rt/2)~ or. Thus, Eq. (33) yields 
2 = 2~ if 21 > 22 and 2 = 22 if 22 > -~1- Since '~1 and 22 are the top Lyapunov 
exponents respectively for the first and second decoupled oscillators, the 
above result confirms the fact that the largest Lyapunov exponent of the 
system is given by Eq. (32). 

5. C O N C L U S I O N  

In this paper, a perturbative method introduced by Arnold et al. (3) is 
extended to calculate the top Lyapunov exponent and rotation numbers of 
a coupled, two-degree-of-freedom system parametrically excited by real 
noise. The asymptotic analysis presented in this paper leads to a sequence 
of linear Poisson equations to be solved at each order in e. To determine 
the solution completely at any particular order requires that a solvability 
condition be met at the subsequent order in e. At the leading order, this 
solvability condition leads to the integration of the right-hand side of the 
first order of the Poisson equation with respect to q~, q)2, and 4. Thus, it 
is natural that the equation for diffusion in 0 is similar to that obtained 
using stochastic averaging. It is also clear from this analysis that stochastic 
averaging yields the first term in the asymptotic expansion of the Lyapunov 
exponent. Furthermore, this method can easily be extended to obtain the 
second-order approximation of the Lyapunov exponent. 

The maximal Lyapunov exponent yields the stability boundary in the 
system parameter space and hence yields the bifurcation points in this 
space. Even though a stochastic bifurcation occurs when U passes through 
zero, the method presented in this paper does not indicate how many 
exponents pass through zero simultaneously. In addition, the rotation 
number for each degree of freedom is obtained by examining the winding 
rate of tan l(x2i/x2e_x), as opposed to the case of white noise excitation, 
in which the e2-0rder rotation number is identically zero, the e2-0rder 
correction in the real noise case is given in terms of the sine spectra at 2to; 
and e) 1 _ co 2. 

APPENDIX  

It will be shown that i f f  and g are two C 1 functions which satisfy 

f ( x  + me) 1 + n~2) g ( y  + me) 1 - no)2) 

= f ( x )  g ( y )  Vx, y E R ,  m, n E Z  (A1) 
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where (D 1 and o92 are noncommensurable, then f and g must be constant. 
To demonstrate this, Eq. (A1) may be rewritten as 

f ( x  + mo91 q- nco2) g(y) 
- 2(m, n) (A2) 

f ( x )  g(y "4- m(,o I - -  no92) 

which prompts the definition of the following functions: 

f ( x + z )  g(y) 
F ( x , z ) - - - ,  G ( y , z ) - - -  (A3) 

f ( x )  g ( y + z )  

satisfying F(x, O) = G(y, O) = 1. 
The first step is to show that F and G are functions of z only. To 

accomplish this, one notes that Vz E R, there exists a sequence of integers 
{he, mi}i~176 1 for which the following limit holds: 

lim (mio91 + nio92) = z 
i ~  oo 

This follows from the noncommensurability of o9~ and (.0 2. For arbitrary 
Xa, x2 e R, one now obtains 

F ( x i , z ) - F ( x z ,  z) 

=F(xl, lim ( m i o 9 1  +n~o92) )-F(x2, lim (mi(,O i +nio92)) 
i~oo  i~oo  

= lim F(xl,  mio9i + nio92) - F(x2, mio,)  1 Jr rtio)2) 
i--~. oo 

lim ( f ( x l  + mio91 _-t- n,o92) f (x2  + mio91 "-k h i ( . 02 !  ~ 

i-'* oO ~k f ( X l )  f ( x 2 )  / 

= lim (2(mi, ni) - 2(mi, ni)) = 0 
i ~  c~ 

Hence, one may write F(x, z) = _P(z), with a similar argument for G leading 
to 6(y,  z) =- G(z). 

The second step is to show that P and G are constant. To this end, 
inserting these results into (A3) leads to 

f ( x + z ) = f ( x ) ~ ' ( z ) ,  g ( y + z )  g(y) (A4) 
- d ( z )  

with F(0)=  G(0)= 1. Comparing the x-derivative and z-derivative of the 
first of Eqs. (A4) leads to 

f ' ( x )  F(z)= f ( x )  F'(z) 
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from which it follows that  

f ' ( x )  F ' ( z )  

f ( x )  F(z)  

which in turn leads to 

f ( x )  = CF e~ex, 

where CF is a constant.  Similarly, 

g ( y )  = CGe ~c y, 

(const) 

F ( z )  ~ e #Fz 
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G(z) = e ~ 

Using the expressions for P and G in Eqs. (A2) and (A3) yields 

e#F(mcoi + n~2) - -  ,uG(mo~l - ncol) ~ 1 

For  this to hold for all m, n e Z, it follows that # r = # a  = 0 and hence 

f ( x )  = CF,  g ( y )  = C~. 
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